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Abstract 

Introduction: with imported malaria cases in a 
given population, the question arises as to what 
extent the local cases are a consequence of the 
imports or not. We perform a modeling analysis for 
a specific area, in a region aspiring for malaria-free 
status. Methods: data on malaria cases over ten 
years is subjected to a compartmental model which 
is assumed to be operating close to the equilibrium 
state. Two of the parameters of the model are fitted 
to the decadal data. The other parameters in the 
model are sourced from the literature. The model is 
utilized to simulate the malaria prevalence with or 
without imported cases. Results: in any given year 
the annual average of 460 imported cases, resulted 
in an end-of-year season malaria prevalence of 257 
local active infectious cases, whereas without the 
imports the malaria prevalence at the end of the 
season would have been fewer than 10 active 
infectious cases. We calculate the numerical value 
of the basic reproduction number for the model, 
which reveals the extent to which the disease is 
being eliminated from the population or not. 
Conclusion: without the imported cases, over the 
ten seasons of malaria, 2008-2018, the KwaZulu-
Natal province would have been malaria-free over 
at least the last 7 years of the decade indicated. This 
simple methodology works well even in situations 
where data is limited. 

Introduction     

Although Africa is the continent with the highest 
burden of malaria morbidity and mortality, great 
strides have been made in drastically reducing 
cases and deaths (WHO 2019). Many countries on 
the continent are now targeting malaria 
elimination as a result of this reduced burden of 
disease. The southern African region is leading the 
way with all eight southern African countries 
targeting malaria elimination by 2030. This ideal is 
the aim of the Elimination 8 Initiative which is 
strengthening the capacity of the eight countries 
falling under its umbrella to control and eventually 
eliminate malaria from the region. However, in the 

last five years progress towards elimination has 
stalled and even reversed in some countries. The 
Elimination 8 countries are back on track with their 
elimination agendas through coordinated action in 
vector control and case management. 

As one of the Elimination 8 countries, South Africa 
is targeting malaria elimination by 2023. The three 
endemic provinces are at different stages of the 
WHO malaria elimination spectrum with Limpopo 
province still in the control phase whilst 
Mpumalanga is in the pre-elimination phase. 
KwaZulu-Natal (KZN) is the only province that is 
firmly in the elimination phase having shown a 
steady decline in the number of local cases 
reported in the past twelve years. Historically, this 
province was the main contributor to the malaria 
burden of the country, especially in the epidemic of 
1999 - 2000 when KZN accounted for two-thirds of 
the cases that were reported from the country 
during that malaria season. At that stage, the main 
drivers of the high transmission levels were vector 
resistance to the pyrethroid insecticides used in the 
control programme and parasite resistance to the 
first-line treatment of choice, sulphadoxine-
pyrimethamine. Through the reintroduction of DDT 
to replace the pyrethroid insecticides, vector 
populations were rapidly brought under check thus 
flattening the epidemiological curve. Transmission 
was further curtailed through the introduction of 
artemisinin combination therapy, thus moving 
away from reliance on a single drug to control the 
parasites in the human hosts. 

Although the local transmission of cases has 
reduced to less than 100 cases in the past five years, 
very low levels of transmission persist, being 
attributed to imported malaria with secondary 
transmission of the disease. The study [1] by Raman 
et al. (2020) found that the importation of malaria 
via asymptomatic individuals from Mozambique 
was driving the low-level residual malaria reported 
from the province. To meet the elimination goals, a 
foci-clearing programme was adopted. However, 
imported malaria kept influencing the delineation 
of the foci. It was found that the influx of malaria-
infected individuals into a population protected by 
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a coordinated and sustained control programme in 
which there is successful control poses a major 
problem. People in controlled areas would have 
less immunity to the disease than people receiving 
many infected bites which develop their immunity. 
The majority of migrants originate from 
Mozambique and to a lesser extent Zimbabwe. 
Movement of people occurs in large numbers 
across the formal border crossings and there is 
greater movement of people through informal 
border crossings [1]. Due to the volume of traffic 
and the time taken to test and treat, border 
screening is not possible as it is also labor-intensive 
and cannot be consistently maintained. Thus, the 
movement of people from areas of high 
transmission in southern Mozambique into the 
KwaZulu-Natal (KZN) province of South Africa, 
poses a continuing risk, especially to border 
populations. For South Africa to reach elimination 
and ultimately eradication of malaria, the 
movement of infected people across international 
boundaries needs to be curbed. This study was 
conducted to model the impact of imported 
malaria on the elimination agenda in KZN. 

In this paper, a modeling analysis is performed on 
the effect of imported malaria cases on a 
population where malaria is systematically being 
controlled toward elimination. Data on malaria 
cases over ten years is subjected to a 
compartmental model of ordinary differential 
equations (ODEs). The data enables us to calculate 
the numerical values of crucial parameters. After 
that, we remove the effect of the imported cases. 
Thus we can determine the extent to which the 
disease has (or could have) been eliminated from 
the population. 

A study [2] on malaria elimination progress has 
found that over the decade 2010 -2019, a 
considerable proportion of malaria cases in KZN 
was linked to traveling in malaria-endemic areas 
outside of KZN. The current method can quantify 
the effect to which the KZN local cases are a 
consequence of the imported cases. Work on the 
elimination of malaria in the Mpumalanga province 
of South Africa also appears in the work [3] of Silal 

et al. (2014), using a compartmental model with 9 
classes which is very different from the popular 
ODEs model structure. A related theme is studied 
in [4] (Yacheur et al. 2019), but with a completely 
different model of 11 compartments versus the 7 
compartments of our model. 

Methods     

In this paper, malaria prevalence numbers for KZN 
over the period 2008 -2018 as reflected in Maharaj 
et al. [5], are converted to 2018 present values, 
with respect to Republic of South Africa (RSA) 
population growth rate. These values for the 10 
seasons are then averaged. The information is fed 
into a mathematical compartmental model [6] 
which enables us to calculate the biting rate and the 
disease induced mortality rate. The latter 
information can now be utilized to reveal the 
progression of malaria in the population assuming 
that there are no imported cases. 

Study area: the malaria region of KZN, included 
within the districts of uMkhanyakude, King 
Cetshwayo, and Zululand (Figure 1). This region 
carries a population of more than 2.6 million (Table 
1) at risk of malaria. 

Data: essentially, the data used in this paper are the 
malaria infection cases and mortalities in KZN over 
the period 2008 - 2018, as reported in [5]. 
Population growth figures are obtained from 
Worldometers [7]. 

Mathematical model: we utilize the 
compartmental model from [6], of ordinary 
differential equations to investigate and quantify 
the number of malaria infection cases in KZN, 
together with the effect of infected migrants from 
elsewhere moving in and out of KZN. The model 
accommodates the in-door residual spraying (IRS) 
intervention and allows for (sporadic) influx of 
infected humans. We note that infected mosquitos 
from outside the borders do not penetrate very far 
into the area on their own but they can be carried 
by taxis and other road transport in small numbers. 
For the purpose of the current study, we assume 
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that the effect of imported infected mosquitos on 
the total human population is negligible. In the 
current paper we apply the model [6] in producing 
computations and simulations as an application, in 
order to further expound on the research in [1,5,8]. 
A flow chart for the model is shown in Figure 2 and 
the parameters of the ODEs are described in Table 
1. Also in Table 1, we declare the numerical values 
of the parameters. As in the model in [6], we 
partition the human population into four classes: 
susceptibles (S), latent-infected (Eh), infectious (Ih) 

and recovered (R), while the vector population is 
divided into three classes: the susceptibles (V), 
latently infected (Ev) and infectious (Iv). Both the 

human and vector populations are assumed to be 
homogeneously mixing. Then the model comprises 
the following system of ODEs. The system of 
ordinary differential equations: 

 

 

 

 

 

 

 

 

We choose the parameters for the model to apply 
as best as possible to KZN. Most of the parameters 
are of biological type and will be sourced from 
relevant papers, essentially [9] and sources quoted 
therein. The incubation period of Plasmodium 
falciparum is 9-14 days in humans [10] and 7-9 days 
in mosquito vectors [11]. Based on these numbers, 
we choose the relevant parameter values ρh= 1/12 

per day and ρv= 1/8 per day. The parameters γ1and 

γ2 will be assigned nominal values since the 

(quantitative) effect of IRS on vector mortality in 
the region is not well documented. 

Parameters relating to population sizes have to be 
carefully calculated. It is common for ODE 
compartmental models to assume that there is no 
long-term population growth. Minor temporary 
fluctuations in the population size may arise from 
disease-induced mortalities. Our model is also 
based on this assumption. For this reason, we adapt 
the numerical values of parameters related to the 
human population such as to be relevant for the 
year 2018. This means that population data will be 
converted to their 2018-equivalent values. These 
converted numbers are calculated with respect to 
the population growth of RSA as reflected in [7]. 
The vector population is estimated at 
approximately 20 times the size of the human 
population as in [6]. 

The total population at risk is obtained from the 
document [12], and this determines the parameter 
K0. We assume the average population density of 

the vectors over the region to be 20 times the 
population density of humans. The parameters K1 

and K2 are obtained by calculating the mean per day 

of the (2018-converted values) of the imported 
cases as in [5]. So we obtain K1+K2, and we have to 

split this value between K1 and K2. However, the 

split between K1 and K2 is difficult to determine, and 

we shall just make a nominal split. Our fitted rates 
a and δ stay the same up to 3 significant digits 
irrespective of the split. The parameters μ, θ, b, c, 
σ, ζ are deduced from (respectively) the sources 
[9,13-18]. 

Two of the parameters of our model will be fitted 
from [5]. These two are the biting rate a and the 
malaria-induced mortality rate δ. We can assume 
that most of the malaria-infected migrants are in 
the latent phase. From [5] we calculate the mean 
number of malaria mortalities per day over the ten 
years and the mean value per day of the total 
number of malaria infections. These latter two 
values are used together with the model system of 
ODE, to simultaneously calculate the equilibrium 
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state and the values of the parameters a and δ. In 
the case of no influx of humans into the population, 
the model has a disease-free equilibrium point X0= 

(K0/μ, 0, 0, 0, L/ (θ+γ0), 0, 0) and a basic 

reproduction number R0: 

 

From [6], it can be deduced that if R0< 1, then the 

disease-free equilibrium is globally asymptotically 
stable. This means that if there is zero influx of 
imported cases and R0< 1, then given any initial 

state of the population, the disease will eventually 
vanish from the population, that is, malaria will be 
eliminated from that population. The model is run 
on data from [5] and parameter values as in Table 
1. Different scenarios of influx are considered. 

Results     

From the paper [5], for the 10 years 2008-2018, we 
calculated the 2018-equivalent values of the 
relevant malaria incidence data, using general 
population numbers for South Africa from [7]. The 
following values were calculated. The mean annual 
number of imported malaria cases: 460; the mean 
annual number of malaria cases both local and 
imported infections: is 534; and the mean annual 
number of malaria deaths: is 6.32. This enabled us 
to calculate the two unknown parameters, i.e, the 
biting rate αand the malaria-induced mortality rate 
δ, and thus the model is completely calibrated. The 
incubation period of Plasmodium falciparum is 9-14 
days in humans [10] and 7-9 days in mosquito 
vectors [11]. Based on these numbers, we choose 
the relevant parameter values ρh= 1/12 per day and 

ρv= 1/8 per day. 

The population at risk is obtained from [12] as 
having the numerical value 2 630 100, and this 
corresponds to K0/μ. The complete set of 

parameter values is listed in Table 1. A key result is 
that for the special scenario of having no influx of 
infected individuals, we can now calculate the basic 
reproduction number R0= 0.3703. The equilibrium 

values of the various compartments, also obtained 
from the given parameter values, are as follows: 

 

Now we can produce a range of graphs, using the 
given parameters and variations on these 
parameters. The two curves in Figure 3 represent 
the Iv-class (i.e. active malaria cases) for two 

different scenarios. The higher curve indicates the 
steady state when we have an inflow of infected 
humans at the constant average rate calculated 
from [5]. The decreasing curve shows the 
phenomenal reduction in the number of active 
malaria cases when there are zero imported cases. 
In Figure 4, the trajectories of the infectious human 
class are constructed for the case that the 
insecticide-induced mortality rates in the infectious 
and latent classes of the vector are intensified to 
levels higher than the assumed baseline levels. The 
following cases are considered: Case 1 is the output 
of the model with parameter values as in Table 1. 
Case 2 is the output with the parameters γ_1= 
0.75θ and γ_2= 0.75θ. Case 3 is the output with 
γ_1= 1.5θ and γ_2=1.5θ. 

In Figure 5 we run the model with different levels 
of imported malaria cases, over 2 years. We obtain 
three curves, considering different levels of inflow 
of latently infected humans into the KZN 
population, these levels being 480 p.a., 240 p.a., 
and also zero p.a. More precisely, the curves 
correspond to the following levels of inflow of 
infected: Case 1 is the output of the model with 
zero imported malaria cases. Case 2 is the output 
with 240 imported cases per year. Case 3 is the 
output with 480 imported cases per year. 

Discussion     

The model quantifies the effect of infected 
immigrants. Even with R0= 0.7405 < 1 as computed, 

it can be observed that due to the influx of infected 
individuals, the infection stays in the population. 
On the other hand, noting that R0 is less than unity, 

the disease will indeed vanish from this population 
if there is no inflow of infectious humans. Figure 
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3shows how infections fall over 1 year if the inflow 
of infected individuals is zero. Even if the biting rate 
would have been double the value in Table 1i.e., if 

we had taken α=2 x 1.0011 x10-8, then we would 
have had R0= 0.7405, which is still less than 1, 

guaranteeing the ultimate elimination of the 
disease. The graph in Figure 3 shows how the class 
of infectious individuals decreases sharply if we 
start at the equilibrium state calculated above, and 
we keep the inflow of infected at zero. 

Regarding IRS we make the following observations. 
If the insecticide-induced mortality rate is higher, 
we would expect the human infectious class to be 
higher than the infectious class in the case of a 
lower insecticide-induced mortality rate. The 
graphs in Figure 4 reveal that there is a notable 
decrease in malaria prevalence whenever the IRS is 
intensified. As in the standard case, we observe a 
very significant decline in the infectious class. The 
lowest curve corresponds to an insecticide-induced 
mortality rate which is 1.5 times the general 
mortality rate. We expect this to lead to a faster 
extinction rate of malaria, as is indeed shown in the 
graph. 

In Figure 5 we run the model with different levels 
of imported malaria cases, over 2 years. The curve 
showing the highest malaria prevalence is due to an 
influx of 480 cases per year. In this case, the influx 
is higher than the (population growth rate adapted) 
average influx over the decade. Consequently, it 
leads to a malaria prevalence that is higher than the 
initial value. Then we did it for 240 imported cases 
per year and we observed that it also gives a fairly 
high malaria prevalence over the 2 years, with 
active cases standing at 138 at the end of the 2 
years. In the third case, we have done the I(t)-
trajectory for the case of zero imported malaria 
cases. In this case, we notice how the malaria 
prevalence falls over the two years, with active 
cases dropping from 257 to 9. We have 
demonstrated the disturbing effect of imported 
malaria into a population which would otherwise 
have moved towards zero prevalence. 

Study limitations: while malaria transmission is 
affected by climatic conditions and ideally should 
be modelled as such, it is commonly modelled 
without accommodating climatic variables. The 
latter approach was followed in the current 
analysis. The results can be improved by using (far 
more complex) climatic models and climatic data. 

Conclusion     

The analysis in this study shows the importance of 
a good understanding of the impact of imported 
cases into a population that is at risk of malaria. This 
methodology can be utilized more generally. A 
study in this regard has already been conducted on 
the effect of imported measles on a local 
population [19]. We note the huge spike in malaria 
cases in South Africa during the period 1996-
2001 [20]. The paper [6] investigates the role of the 
importation of cases in the latter event. Migration 
of vectors over borders can be an additional cause 
of infections into the population in point. One can 
readily modify the mathematical model to 
accommodate the influx of infected mosquitoes, 
but the rate of immigration of mosquitos is difficult 
to quantify. Nevertheless, near the Mozambique 
border, the human population is sparse, and the 
effect of such an influx of vectors is not as severe as 
it would have been otherwise. 

The modeling was performed assuming that the 
state of the disease in the population is near to 
equilibrium, and by taking the annual average per 
season over 10 seasons. This is a good 
approximation with a fairly clear answer. More 
accurate analysis can be done for a specific season 
if the initial prevalence numbers of malaria cases in 
the population are known. Also, a climate-based 
model (e.g., [13,21]) will ensure better versatility 
and accuracy. Nevertheless, the current 
methodology works well when data is limited. The 
modeling shows that over the ten seasons of the 
period 2008-2018, the KZN province would have 
been very close to malaria-free if the imported 
cases could have been avoided. The results 
demonstrate that KZN would have become malaria-
free very quickly after the termination of imported 
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cases. This makes the case for sub-national 
elimination certification; the imported cases need 
to be prevented as a measure to prevent the 
reintroduction of the disease into areas where the 
disease has been eliminated. 

What is known about this topic 

• During the 1990, the KZN province of South 
Africa contributed approximately two-thirds 
of the malaria cases of South Africa, but in 
KZN the numbers have significantly dropped 
over two decades since the year 2000, even 
to the extent that KZN is now leading the 
way to elimination of malaria; 

• Over the years 2008 -2018 a significant 
fraction of malaria cases in KZN province of 
South Africa has been found to be imported 
cases. 

What this study adds 

• This study quantifies the extent to which 
imported malaria cases contribute to local 
transmission in KZN; 

• It is revealed that malaria transmission 
would have consistently decreased in KZN 
and exactly how close to elimination KZN 
would have been if the imported cases could 
have been avoided. 
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Table and figures     

Table 1: parameters, description and numerical 
values (per day, where relevant) 
Figure 1: the study region comprises the three 
districts in KwaZulu-Natal as depicted on the 
enlarged map on the right-hand side 
Figure 2: a flow chart depicting the population 
dynamics of malaria; the broken arrows denote 
action on the target flow, not flow of individual 
humans or vectors 
Figure 3: trajectories of the active infected human 
classes, showing the reduction in the number of 
active malaria cases when there are zero imported 
cases 
Figure 4: trajectories of the infectious human class 
for different levels of insecticide induced mortality 
rates 
Figure 5: trajectories of the infectious human class 
for different rates of inflow of infected humans 
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Table 1: parameters: description and numerical values (per day, where relevant) 

Symbol Description Numerical value 

μ Mortality rate for humans, not including death directly 
due to malaria 

4.657/10000 (per 
day) 

θ Mortality rate of vectors 0.04 

b The probability that a bite by an infected mosquito will 
lead to a (new) human infection 

0.075 

c The probability that a bite on an infected human will 
lead to a (new) mosquito infection 

0.0375 

ρh Transfer rate of humans from Eh class to Ih-class 1/12 

σ Transfer rate of humans from class Ih to R-class 

(recovery rate) 

1/180 

ζ Transfer rate from R-class to  S-class (rate of loss of 
temporary immunity) 

1/730 

ρv Transfer rate of vectors from Ev  -class to Iv-class 1/8 

γ1 Mortality rate due to IRS in class 0.004 

 γ2 Mortality rate due to IRS in class 0.004 

K0 Human birth rate 122.498 

L Mosquito birth rate 2,496 000 

K1 Rate of inflow of latently infected humans 1.9167 

K3 Rate of inflow of infectious humans 0 

K3 Rate of outflow of recovered migrants 1.87719 

α The probability of a specific human getting bitten by a 
mosquito during a one-day period 

1.0011x10-8
 

δ The rate of human deaths due to malaria 0.0000672 

 

Figure 1: the study region comprises the three districts in KwaZulu-Natal as depicted on 
the enlarged map on the right-hand side 
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Figure 2: a flow chart depicting the population dynamics of malaria; the broken arrows 
denote action on the target flow, not flow of individual humans or vectors 

 

 

 

Figure 3: trajectories of the active infected human classes, 
showing the reduction in the number of active malaria 
cases when there are zero imported cases 
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Figure 4: trajectories of the infectious human class for 
different levels of insecticide induced mortality rates 

 

 

 

Figure 5: trajectories of the infectious human class for different rates of 
inflow of infected humans 
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